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We present an analysis of the parallel dynamics of the Hopfield model of the 
associative memory of a neural network without recourse to the replica for- 
malism. A probahilistic method based on the signal-to-noise ratio is employed 
to obtain a simple recursion relation for the zero temperature as well as the 
finite temperature dynamics of the network. The fixed points of the recursion 
relation and their basins of attraction are found to be in fairly satisfactory 
agreement with the numerical simulations of the model. We also present some 
new numerical results which support our recursion relation and throw light on 
the nature of the ensemble of the network states which are optimized with 
respect to single spin flips. 
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1. I N T R O D U C T I O N  

The Hopfield model  of the associative memory  of a neural  network has 
been investigated extensively numerical ly  as well as analytically. (lm) 
Numerical ly,  the results which have been most  firmly established are the 
following. A network  of N neurons  can store aN uncorrela ted patterns,  
where ~ ~< ~c=  0.14. The overlap of the retrieved memory  with the corre- 

sponding  stored memory  is M *  -- 1 in the limit ~ ~ 0, and  M *  = 0.97 in the 

limit ~ ~ 0.14. The basins of a t t ract ion of the stored memories gradual ly  
shrink as more and  more  pat terns are stored. The preceding results are 

based on the zero- temperature  dynamics.  Numer ica l  work on the finite- 
temperature  dynamics  of the model  is somewhat  less extensive, bu t  it 

indicates that  an  increase in temperature  reduces the storage capacity of 
the network below 0.14N; at the same time the quali ty of recall is 
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improved. Subject to this proviso, the behavior of the network under 
finite-temperature dynamics is similar to the zero-temperature dynamics 
upto a critical temperature above which the network ceases to function as 
an associative memory device. 

Theoretical understanding of the Hopfield model has been developed 
within the general framework of nonlinear dynamics and the methods of 
equilibrium statistical mechanics. The Hopfield model has symmetric con- 
nections (synapses) between pairs of formal neurons. Therefore the system 
is expected to evolve to a locally minimum energy state which can be 
studied by the methods of equilibrium statistical mechanics. Amit et  aL (2) 

have studied in detail the statistical mechanics of the Hopfield model by 
utilizing the concepts and tools developed in the theory of spin glasses 
based on the replica method. There are two solutions in the replica-sym- 
metric approximation. One is the memory retrieval solution with a large 
M*. This has c~ c = 0.137 and M * =  0.967 at c~ = 0.137. The other solution is 
the spin-glass solution with M * =  0. These solutions are quite close to the 
numerical results. However, at zero temperature, the large-M* solution 
is the lowest energy solution only for ~ <0.05 (approximately), and for 

> 0.05 the spin-glass solution has lower energy. Thus, strictly speaking, 
the replica method's prediction for the storage capacity of the Hopfield 
model (with zero-temperature dynamics) is approximately ~c = 0.05 against 
the numerical result ec---0.14. This discrepancy remains even when replica 
symmetry breaking (5) is taken into account. A calculation (6) based on one 
level of replica symmetry breaking extends the region of the large-M* 
solution from ec = 0.137 to ~c = 0.144, but the solution does not correspond 
to minimum energy. Higher levels of replica symmetry breaking get 
increasingly more cumbersome to calculate, and have not been evaluated 
so far. There have been some attempts (ref. 5, Chapter XIII, p. 394; ref. 7) 
to avoid the replica method, but so far most of these attempts have at best 
produced results equivalent to those obtained by the replica method. In 
view of this it is desirable to explore alternate methods of analysis for 
understanding the Hopfield dynamics. 

This paper presents analytical results on the zero-temperature as well 
as the finite-temperature dynamics of the Hopfield model (with parallel 
spin updating) without recourse to the replica method. Our method has the 
advantage of being simple and physically transparent, and it predicts 
results which are fairly close to the numerical results. We also present some 
new numerical results which support our analysis, and give important 
insight regarding the ensemble of equilibrium states which are approached 
by the Hopfield dynamics. Our numerical results show that the replica- 
symmetric prediction for the minimum energy of the system is slightly in 
error. The significance of these results goes beyond the small numerical dis- 
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crepancies between the theory and numerical simulation. They indicate that 
the ensemble of equilibrium states approached by the Hopfield dynamics is 
not necessarily the canonical ensemble assumed in the replica method 
treatment of the equilibrium statistical mechanics of the Hopfield model. 
They also suggest that the most characteristic feature of the Hopfield 
dynamics may not be to decrease the system's energy, but rather to 
increase its entropy. We point out that an energy-conserving Hopfield 
dynamics may also possess the properties of an associative memory. 

2. T H E  M O D E L  

Although the Hopfield model of associative memory is well known, 
we recall it briefly for the sake of completeness, and also to set up our 
notation. The model is characterized by the following Hamiltonian: 

where 

1 J S Sj(1 - (2.1t H =  - ~ . .  
1, J 

J 1 
# 

Here {~f= +1; i=  1, 2,..., N; /~ = 1, 2,..., p} are p N-bit patterns stored in 
the memory of the network, and {Si = __1; i=  1, 2,..., N} is a "sight" that 
jogs the memory of the network leading to the retrieval of the pattern, say 
{~0}, which is presumably closest to {Si}. The Kronecker delta symbol in 
the expression for H ensures that the self-interaction terms i = j  are 
excluded. It should be noted that the memories {~}  lose their individual 
identity when stored in the synaptic matrix J0, i.e., all stored memories 
have the same address. Retrieval of a memory in the Hopfield model is 
based on the content of the memory (which may be partially corrupted). 
It is different from the usual computer process of fetching a memory by the 
hardware address of the memory. The prompting sight {S~} sets the 
network into motion; the motion eventually settles down to a fixed-point 
attractor of the dynamics; the fixed-point pattern is taken to be the 
retrieved memory. Thus, the memory is addressed by its content, which is 
incorporated in {S~}. The equations of motion in their simplest form are 
the following discrete-time equations of motion: 

Si( t  + 1) = sign ~ J~Sj(t)(1 - 6~) (2.2) 
J 

The dynamics of Eq. (2.2) is completely deterministic. It does not incor- 
porate any stochastic noise. Drawing upon the notions of statistical 



708 Shukla 

mechanics, the dynamics of Eq. (2.2) can be viewed as the dynamics of the 
network at zero temperature. Stochastic noise can be incorporated by 
defining the network dynamics in analogy with the single-spin-flip Monte 
Carlo dynamics of Ising spins at finite temperature. Let P(hi) be the 
probability that S ~ ( t + l )  is +1,  and 1 - P ( h 3  be the probability that 
Si(t+ 1) is - 1 .  Then 

P(hi)----- [1 + exp( -2 f lh i ) ] - I  (2.3) 

Here h i is the local field at site i at time t given by the argument of the sign 
function in Eq. (2.2), and T=/~-1 is the temperature of the network. It is 
easy to see that in the limit of zero temperature (2.2) and (2.3) yield the 
same dynamics. 

3. D Y N A M I C S  

Let us focus on the energy of the network states at each time step t. 
The energy of any state {St(t)} in the Hopfield model is given by 

1 ~ aosi(t) Sj(t)(1 - 6ifl (3.1) E(cr t)= - ~ . .  
t ,J  

Let Rv denote the normalized (-1 ~<R~ i) overlap of the pattern {Si} 
with {{u}: 

Ru( t )= l  ~i ~ . Si(t ) (3.2) 

The energy (3.1) can be rewritten as 

E(~, t)= Ne(e, t) (3.3) 

where 

e(o~, t) = -- (3.4) 

A remark regarding the quantity e(cg t) is in order. The notation suggests 
that e(e, t) depends only on e and t. This is strictly correct only in the 
limit N--+ oo owing to the self-averaging property of the Hopfield model. 
In numerical simulations with finite-size systems e(~, t) is necessarily a 
sample-dependent quantity in the sense that it depends on the choice of the 
starting state as well as the specific realizations of the aN uncorrelated 
stored patterns. In the Hopfield model, as in all frustrated systems, the fluc- 
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tuations in the energy of the system are sizable even in the equilibrium 
state. Thus special care has to be exercised in constructing ensemble 
averages of numerical results before they can be compared with the 
predictions of a theoretical formula. 

3.1. Zero-Temperature Dynamics 

For simplicity we shall first discuss the zero-temperature dynamics. In 
the context of associative memory, the interesting trajectories of Eq. (2.2) 
belong to the case when one of the overlaps R, ,  say R~0, is much larger 
than the other overlaps. In this case, 

R2(t)(1 - 5.uo) = c~ - 2e(a, t) - R2o(t) (3.5) 
# 

We will focus on the development in time of the overlap of {~o} with 
{Si(t)}. We have 

~~ + 1) = ~0; sign ~ J~Sj(t)(1 - 5u) 
J 

= sign ~fo ~ Jo.Sj(t)( 1 _ ~ij) 
J 

= sign ~fo • ~ ~ y S j ( t ) ( 1  - 6~) 
J 

=sign { ~  (~fo~)~j  ~fSi( t ) ( l_6i j )  } 

p 

p 

(i = 1, 2 ..... N) 

where 

(3.6) 

1 
M , , ( t )  = r  - (3.7) 

J 

The above equations contain the full dynamics of the Hopfield model. 
There is no approximation so far. The object of the following analysis is 
to obtain a macroscopic description of Eq. (3.6) which incorporates the 
essential physics of the microscopic dynamics. For this purpose, we will 
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reduce the set of Eqs. (3.6) to a single equation for R~o(t ), i.e., for the 
overlap of {Si(t)} with the stored memory closest to it. 

A comparison of Eqs. (3.2) and (3.7) shows that R,  and M,  differ by 
a very small quantity of the order of N -  1 which goes to zero in the thermo- 
dynamic limit. The important difference is that, unlike R~, the quantity 
Mu(t) in Eq. (3.6) does not involve the ith bit of the stored picture and is 
therefore independent of the multiplicative prefactor r This will be 
important later when we apply the central limit theorem to the right-hand 
side of Eq. (3.6). 

We consider parallel updating of spins, and sum Eq. (3.6) over i. This 
yields 

NRuo( t+I )=N+-N_;  N + + N  =N 

Here N+ and N_ denote the number of times the quantity in the square 
brackets in Eq. (3.6) is positive or negative respectively. The quantity in the 
square brackets consists of a "signal" term M,o(t ) and a "noise" term which 
consists of a sum of p - 1  terms which are independent because of the 
multiplicative prefactor ~0~ .  The multiplicative prefactors are independent 
of Mu and different multiplicative factors are independent of each other 
because the stored patterns are uncorrelated with each other. Therefore 
the central limit theorem can be applied to the noise term, and we may 
take it to have a Gaussian distribution with average zero and standard 
deviation a given by 

= E 1 - 
p 

Now it is easy to see that 

N+ 1V /M.o(t)\q 
N = ~ ~1 + err ~ 21-~-~-~ ) J  

( 3 . 8 )  

o r  

/M,o(t)\ 
(3.9) 

In the above equation R,0 can be replaced by M~0 without introducing any 
error in the thermodynamic limit. Thus we get 

M,o(t+ 1 ) = e f t \  21/2 a j (3.10) 
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where 

cr 2 = o~ - 2e(o~, t) - M~o (3.11) 

Equation (3.5) has been used in writing Eq. (3.11). Equation (3.10) is a 
closed-form equation for a single parameter M~o(t ). As there is only one 
parameter now, the subscript #o may be dropped for convenience. We get 

M(t) M(t+ 1)= erf ({2[c~ - 2e(~-~_MZ(t)]m}) (3.12) 

Equation (3.12) is our main result for the T= 0 dynamics of the Hopfield 
model. A special form of this equation valid at the fixed point, and with the 
fixed point value of e(~) set equal to -0.5, i.e., e(c0=e*(~)= -0.5, was 
proposed by Kohring38) The advantage of the full equation is that it allows 
us to understand the main features of the Hopfield dynamics in terms of a 
single parameter e(~, t) which we can interpret as the energy of the system 
per spin in the thermodynamic limit. We have verified by direct numerical 
computation for large N and p (we performed numerical tests for N = 4000 
and p = 120) that Eq. (3.6), which contains all the microscopic details of 
the dynamics without approximation, gives the same result as Eq. (3.12) if 
e(c~, t) is calculated from (3.6) and substituted in (3.12). 

The long-time behavior of Eq. (3.12) is determined by a fixed-point 
value e*(~). Equation (3.12) has a fixed-point solution with a large overlap 
M* >0.97 for ~ -2e* (~ )<  1.14. This fixed point may be associated with 
the memory retrieval phase. A novel feature of Eq. (3.12) is that it is the 
quantity ~c-2e*(7c), rather than ~c alone which determines the memory 
retrieval phase. The transition occurs at ~c-2e*(~c)= 1.14. An analytic 
calculation of the fixed-point energy e*(~) appears to be a difficult task. 
However, we may compare the prediction of Eq. (3.12) with the replica- 
symmetric result for the quantity e*(ct) at the threshold of the storage 
capacity of the network. If we ignore the stability problem of the replica 
solution, the replica-symmetric result for e*(c~c) is e*(c~)= -0.5014. If we 
use this value in the equation ~c-2e*(~c)= 1.14, we get ~c = 0.137, which 
agrees with the replica-symmetric result for ~c- Thus, we are able to recover 
the replica prediction for c~c in our formalism if we use the replica result for 
e*(~). This is interesting because it could not have been seen beforehand. 

Equation (3.12) also provides a qualitative idea of the basins of attrac- 
tion. It should be kept in mind that we have derived (3.12) with the help 
of probabilistic arguments based on the signal-to-noise ratio. Our deriva- 
tion is therefore applicable when the signal is larger than the noise, or 
M2(t)> [-c~-2e(c~, t)-M2(t)].  Let us assume that our starting pattern 
at t = 0  has an overlap M( t=0 )  with one of the stored patterns, and 

822/71/3-4-23 
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is uncorrelated with the other patterns. Then it is easy to see that 
e(7, t = 0) = -0.5M2(t = 0). Thus, at the first time step, Eq. (3.12) takes the 
form 

(M(,=% 
M(t= 1 ) = e r r \  (2~)1/2 j 

The above equation tends to increase any initial overlap M( t=0)  for 
< 2/re. Numerical simulations also show a similar trend at the initial 

stages of the dynamics. However, only the trajectories with M2(t = O)> 
(signal larger than noise) may be expected to lead to the retrieval of the 
memory. In other words, only those starting patterns which have 
M(t = 0) > et/2 may be expected to lie inside the basin of attraction of the 
corresponding memory. This expectation is in fairly good agreement with 
the numerical simulation results. 

It would be nice to have a simple dynamical equation for the quantity 
e(e, t). This requires equations for the smaller overlaps M~(t), p r We 
may attempt to construct these equations by writing an expression for 
r  similar to Eq.(3.6). However, in this case the noise term 
dominates over the signal term. The noise term is dominated by the largest 
overlap term. The term gives ~Se(t + 1)= sign(~,.'~ In this approxima- 
tion we find M,(t)= + N  -1/2 independent of t, and e(e, t)= - !M2 tt~ - -  2 #o '~ t ,  

which gives 

, o { M(t) 
M(t + 1~ = er, ~ )  (3.13) 

Unfortunately, the above approximation misses the subtle correlation 
effects of the Hopfield dynamics whose effect appears to be to increase the 
quantity o -2 = ~ ,  M~(1-6~,0) during the evolution of the pattern. Equa- 
tion (3.13) gives a second-order transition at C~c= 2/re against the observed 
first-order transition at ~c = 0.14. 

3.2. Numer ica l  Results and a M o d e l  Recursion Relat ion 

We have studied the quantity e(~, t) numerically in the special case 
when the initial pattern is one of the stored patterns. We performed 
numerical simulations on finite-size systems with N = 100, 200, and 400. In 
each case aN uncorrelated patterns were generated and stored in the 
network memory. Then each stored pattern was tested under the zero- 
temperature Hopfield dynamics to see if it approached a fixed point. The 
procedure was repeated till we had obtained 1000 attractors for each e. The 
large number of attractors tested offset to some extent the small size of the 
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networks (N~<400) which we could study conveniently on our PC486. 
Table I shows the results of the average energy of the initial state and the 
final state (fixed-point pattern) for N = 4 0 0  and several values ofa.  The 
results for other values of N are similar. 

Our numerical results indicate that there are perhaps two prominent 
aspects of the Hopfield dynamics. If the starting pattern is not already very 
close to a stored memory, then the first step of the parallel dynamics trans- 
forms the pattern very nearly into the stored memory. This step lowers the 
energy of the network significantly w.hen the initial overlap is small. Sub- 
sequent steps of the dynamics appear to increase the entropy of the system 
without lowering the energy very much. This is done by taking a small 
fraction off the large overlap and distributing it among the overlaps with 
the other stored pictures. If the starting pattern has an overlap M0 with one 
of the stored patterns and is uncorrelated with the other stored patterns, 
then we can make a very useful approximation for the quantity e(a, t). This 
approximation is as follows: 

e(cq t ) =  1 2 - ~ M  o for t = O  
(3.14) 

1 for t~>l and c~<0.14 

Figure 1 shows the fixed points of Eq. (3.12) with e(e, t) given by 
Eq. (3.14). The upper curve shows the fixed-point value M*, while the 
lower curve shows the minimum value of the initial overlap Mo which leads 
to the memory retrieval. Figure 1 is in fair agreement with the available 
numerical results for the basins of attraction. (4) The results in ref. 4 are for 
sequential dynamics, but similar trends are observed in parallel dynamics. 

It is also interesting to note that an energy-conserving parallel 
dynamics of the Hopfield model also possesses the main features of a n  
associative memory. By an energy-conserving dynamics we mean a 
dynamics where at each step the p overlaps are constrained such that 
e(e, t) = -0.5.  The fixed points of Eq. (3.12) with e(~, t) set equal to - 0 . 5  

Table I 

(e(~, t = O) ) (e*(oO) 

0.05 -0.500 ____ 0.001 -0.500 • 0.001 
0.10 -0.500 __+ 0.001 -0.500 __ 0.001 
O. 11 - 0.500 • 0.001 -- 0.500 + 0.001 
O. 12 -- 0.500 __+ 0.001 - 0.500 • 0.001 
0.13 --0.500 _____ 0.001 -0.500 + 0.001 
0.14 -0.500 • 0.001 -0.500 __+ 0.001 
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Fig. 1. Basins of attraction for memory retrieval with Eqs. (3.12) and (3.14): The lower curve 
shows the minimum initial overlap which leads to memory retrieval. The upper curve shows 
the overlap of the retrieved memory with the stored pattern. 

are described in ref. 8. In the limit ~ = 0, the nontrivial stable fixed point is 
reached for an initial overlap M(t = 0)>~ 0.765. The basin of attraction 
of the nontrivial fixed point decreases with increasing storage ratio a. 
Thus, Eq. (3.12) with e(a, t ) = - 0 . 5 ,  i.e., the energy-conserving Hopfield 
dynamics, contains the main qualitative features of the non-energy-conserv- 
ing dynamics. This is remarkable because it is generally thought that the 
most characteristic feature of the Hopfield dynamics is to move the system 
to states of lower energy. For sequential updating of spins, the Hopfield 
dynamics certainly moves the system to states of lower energy. However, 
this is not necessarily so for parallel updating. The more characteristic 
feature of (parallel updating) Hopfield dynamics seems to be an increase in 
entropy due to the increase in the smaller overlaps rather than a decrease 
in the energy of the system. 

Before concluding this section, we mention that each fixed point of 
Eq. (3.12) in fact represents a very large number of stable solutions of 
Eq. (2.2), i.e., all distinct configurations which are compatible with the 
fixed-point value of the order parameter M*. These configurations are 
optimized with respect to each single spin flip. The quantity Si(t + 1)S~(t) 
measures whether the spin Si(t) is flipped at the next time step or not. If 
Si (t + 1 ) S,- (t) > 0, then the spin is not flipped. Equivalently, if ~2j J~j Sj (t) 
S i ( t ) (1-6 ,~)> 0, then S~(t+ 1)= S~(t). This condition again leads to the 
iterative map (3.12). Therefore the fixed points of (3.12) correspond to 
patterns which have been optimized with respect to each individual spin 
flip. There is a very large number of such patterns. For example, at 
~c = 0.14, the number of configurations corresponding to M * =  0.97 scales 
as exp(0.08N). 



Dynamics of the Hopfield Model 715 

3.3. F in i te -Tempera ture  Dynamics 

The idea behind introducing temperature in the network dynamics is 
to make it more stochastic. At a finite temperature T, Si(t + 1) need not be 
+ 1 even if the local field h~(t) is positive. The probability distribution for 
Si(t + 1) is given by Eq. (2.3). The distribution depends on the temperature 
T and the local field h i. The local field itself is distributed randomly from 
site to site. Thus the expectation value of S i ( t + l )  over the network 
involves two averages, an average over P(hi) which yields tanh(/~hi), and 
a further average over the distribution of local fields. As in the case of 
zero-temperature dynamics, we shall focus on the expectation value of 
~ o  i Si( t+ 1): 

M~o(t + 1)= (( ~?S~(t + 1)55 

= ((~7 ~ tanh[/~h~(t)] )) 

= ( ( t anh[ /~~  b 

= ( ( t a n h { B [ M ~ o ( t ) + ~ f M u ( t , ( 1 - 6 ~ a o ) ] } ) )  (3.15) 

Following the same steps which took us from Eq. (3.6) to (3.12), we obtain 

1 [ +~ ' ( z - M ( t ) ) 2 ]  tanh ( T ) ( 3 . 1 6 )  M(t+ 1 ) -  (2n~-2)1/2 J-o~ dzexp [ -  

where a is given by Eq. (3.11), 

a = [c~ -- 2e(c~, t) - M 2 ( t ) ]  1/2 

Equation (3.16) is our main result for finite-temperature dynamics, just 
as Eq. (3.12) was for T=0 .  It can be verified that Eq. (3.16) reduces to 
Eq. (3.12) when T =  0. We can also check that in the limit cr ~ 0 (as when 
only one pattern is stored and the Hopfield model reduces to an Ising 
model of a ferromagnet) we obtain the familiar mean-field equation 
M(t+ 1)=tanh[flM(t)], which has a second-order transition at To= 1. 
The role of finite e is to lower the transition temperature and more impor- 
tantly to make the transition first order. Equation (3.16) can be studied 
numerically to obtain the phase boundary  Tcvs. ~ below which the 
network can function as an associative memory. This is shown in Fig. 2 for 
M o = 1 and e(e, t) given by (3.14). The main qualitative difference between 
the phase diagram so obtained and the phase diagram obtained by 
Amit etal. (2) is that we do not have two kinds of ferromagnetic phases 
predicted by the replica theory. As far as we are aware, the numerical 
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Fig. 2. Phase diagram obtained from Eqs. (3.16) and (3.14) for M 0 = I. The phase boundary 
marks a first-order transition. The low-temperature phase corresponds to memory retrieval. 

simulations do not indicate two types of memory retrieval phases. The 
phase diagram of Fig. 2 appears to be in fair agreement with the numerical 
simulations of the finite-temperature dynamics. 

4. CONCLUSION 

We have presented a simple and reasonably satisfactory theory of the 
Hopfield dynamics without recourse to the replica method. As we have 
already mentioned, there are several good reasons for avoiding the replica 
method. The replica formalism and particularly the notion of replica sym- 
metry breaking is rather unphysical. The simplest solution in the replica 
method, i.e., the replica-symmetric solution, is unstable at T---0 for 

> 0.05. Moreover, the theory of Amit e t  al. (2) based on the replica method 
focuses only on the equilibrium states of the system, which are assumed 
to form a canonical ensemble. On the other hand, the attractors of the 
Hopfield dynamics form a very large number of nearly degenerate states 
which are separated from each other by infinitely high barriers and it is 
doubtful if the standard techniques of equilibrium statistical mechanics and 
the canonical ensemble can be applied to the ensemble of the attactor 
states. In this background, it is rather satisfying that a simple analysis of 
the Hopfield dynamics based on the signal-to-noise ratio gives a reasonably 
satisfactory understanding of the basic phenomena. 

Finally, we must also mention the points where our analysis lacks 
rigor, and those aspects of the numerical simulations which it fails to 
explain in its present form. We have argued that the noise has a Gaussian 
distribution. This is not rigorously correct. The reason is that the Hopfield 
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dynamics builds up correlations between the signal and the noise. If the 
noise at a site i is larger than the signal and of opposite sign, then the spin 
at that site is flipped opposite to ~0. This contributes to the reduction in 
the signal at the next time step, and may make the noise distribution some- 
what skewed. We will not go into this further, but suffice it to say that the 
approximation (3.14), which amounts to increasing the width of the noise 
distribution from c~ to ~ + (1 - M 2 ) ,  captures the main trend of the parallel 
dynamics. The other point is that our theory predicts M * =  0 for ~ > 0.14. 
Numerical simulations (9) show that M* =0.20 in a small region beyond 

= 0.14. Although these results are based on sequential updating of spins, 
it is likely that similar results also hold for parallel dynamics. This aspect 
of numerical simulations is not explained by any theory at present. It 
requires further numerical as well as analytical study of the Hopfield 
dynamics which goes beyond the scope of the present paper. 
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